
Global Academic Frontiers, Vol. 3, Issue 2, 2025, pp. 99-105 Print ISSN 2995-5688 Online ISSN 2995-570X
DOI: https://doi.org/10.5281/zenodo.15582458

99

Construction of a Large Language Model-Driven Online Programming Experiment
System and Research on Active Learning Paradigm Transformation

Shengying Yang 1* Chen Lu 1 Fangfang Qiang 1

1Zhejiang University of Science and Technology, Hangzhou 310023, China
*Corresponding author Email: syyang@zust.edu.cn
Received 14 April 2025; Accepted 29 May 2025; Published 3 June 2025
© 2025 The Author(s). This is an open access article under the CC BY license.

Abstract: Traditional online programming teaching platforms have significant deficiencies in supporting the
development of students' abilities. The core issue is concentrated on the unidirectional nature of the
evaluation system: it cannot effectively assess engineering elements such as code standardization, style
uniformity, and runtime efficiency, nor can it provide students with in-depth suggestions for improvement. To
break through this limitation, this paper constructs a new generation of online programming experiment
platforms based on large language model technology. The platform can analyze students' code logic in
real-time, generate targeted error correction suggestions, explanations of knowledge points, and optimization
plans, and supports language interaction to help students quickly understand programming concepts.
Experiments show that the platform significantly improves students' programming practice abilities,
confirming its value in programming education. It provides an expandable technical solution for the innovation
of programming education models and is of great significance in promoting the transformation of
programming education from passive infusion to active exploration.

Keywords：Large Language Models, Programming Experiment Platform, Program Design, Artificial Intelligence

1 Introduction
1.1 Policy Background and Development of AI Technology

With the rapid development of artificial intelligence technology, large language models (LLMs) have become
the core engine driving the digital transformation of education [1]. In recent years, national policies have clearly
supported the application of AI technology in the field of education. For example, the "Education Power
Construction Plan (2024–2035)" clearly proposes the development of "education-specific large models." By building
a national education big data center and an intelligent evaluation system, it aims to transform teaching from
"standardization" to "personalization." The Ministry of Education's "Action Plan for Empowering Education with
Artificial Intelligence" further refines the requirements, emphasizing the systematic integration of AI education in
primary and secondary schools by stages and the opening of resources from universities and enterprises to build
smart education platforms. Local governments have also actively responded. Shanghai's "Several Measures for
Promoting the Innovation and Development of Large Language Models (2023–2025)" focuses on "intelligent
education and teaching" scenarios, encouraging the development of AI-assisted teaching tools and prioritizing the
cultivation of AI talents in the education field. These policies collectively point to a common goal: to reshape the
education ecosystem with AI technology, achieving large-scale personalized teaching and the cultivation of
innovative abilities.

In the field of computer science education, large language models (LLMs) have demonstrated the ability to

100

clearly and systematically explain complex computer science knowledge and concepts [2]. These models can
transform abstract algorithm logic and data structure principles into multi-level example explanations through
natural language interaction, and dynamically demonstrate them with actual code snippets. This capability not only
lowers the cognitive threshold for beginners but also provides differentiated knowledge decomposition and
extension for students at different learning stages. The rise of AI language models has provided a new perspective
and possibility for programming education [3].

At present, there are still few experiment platforms that can deeply integrate AI language models and
systematically apply them to programming teaching. Although AI language models have made breakthrough
progress in fields such as text generation and data analysis, their specialized applications in programming education
remain relatively weak. Traditional programming teaching generally relies on the one-way infusion of knowledge by
teachers, and students face problems such as low code debugging efficiency, delayed error feedback, and
insufficient personalized guidance. Existing programming experiment platforms are mostly limited to basic
functions (such as online compilation) and lack deep integration with large language models, making it difficult to
achieve real-time logic analysis, natural language interaction, and adaptive learning path recommendations. This
disconnection between technological application and policy orientation restricts the efficiency of students'
computational thinking and practical ability development, and there is an urgent need to build an integrated AI
large model programming experiment system to bridge the technological gap between policy goals and educational
practice.
1.2 Deficiencies of Traditional Online Programming Platforms

Traditional online programming experiment platforms (such as ACM online judging systems) have played an
important role in cultivating students' basic programming abilities as important tools in college programming
education by providing standardized practice links and timely feedback mechanisms [4]. However, with the
deepening of the digital transformation of education, their inherent limitations have gradually been exposed,
restricting students' learning outcomes and potential development [5].

Firstly, the core function of traditional platforms is limited to the binary judgment of code execution results. The
system can only provide conclusions of "correct" or "wrong", but cannot analyze the root causes of errors [6]. The
platform cannot locate the erroneous code segments or generate correction suggestions, which is not conducive to
students' understanding of the fundamental reasons for errors and forces them to consume energy in repeated trial
and error.

Secondly, the singularity of the evaluation dimension restricts the cultivation of students' engineering abilities.
Existing platforms overly focus on the functional realization of the code while neglecting key indicators such as code
style standardization and maintainability. Students' code may pass all test cases but may have problems such as
chaotic variable naming and high module coupling. Long-term training can easily form a "function-first" mindset. At
the same time, the hidden danger of incomplete test case coverage further exacerbates the evaluation bias—if
boundary conditions (such as empty input and extreme values) are not designed, students may misjudge the
robustness of the code, leading to crash risks in actual applications.

A deeper contradiction is reflected in the lack of real-time interactive guidance. Many platforms cannot provide
real-time guidance and code correction suggestions. When students encounter difficulties, they may be left in a
helpless situation, which may increase their sense of frustration and hinder the in-depth development of students'
computational thinking.
2 System Design

This platform focuses on the core chain of students' programming learning and adopts a lightweight,
high-response architecture design by integrating large language models into the programming experiment system,
significantly enhancing the interactivity and adaptability of the learning platform and helping students learn
programming in a more effective and targeted way. As shown in Figure 1, the system architecture is divided into the

101

User Layer and the Core Processing Layer. The platform has built the following functional modules around the core
educational goals:

Figure 1. Large Language Model-Driven Online Programming Experiment System Architecture

2.1 Interactive Intelligent Q&A Module
This module integrates a code editor with a natural language interaction interface, supporting students to initiate

questions in a composite manner of "code snippets + problem descriptions." The platform dynamically analyzes the
core requirements of programming problems by combining code context semantic analysis and large model
reasoning capabilities, generating multi-dimensional answers and knowledge associations. For ambiguous
questions (e.g., "How to optimize this sorting code?"), the platform actively guides the refinement of the question
scope to promote students' autonomous thinking and problem localization abilities.
2.2 Error Diagnosis Module

This module uses a hierarchical processing mechanism to deal with programming problems at different levels. For
example, as shown in figure 2, the platform will conduct real-time checks on the code submitted by students. If basic
syntax errors occur (e.g., indentation errors, undefined variables), it directly returns modification suggestions. For
complex logic problems (e.g., multi-thread synchronization failure, algorithm boundary condition omission), it
provides detailed error reports to help students understand the root causes of errors rather than mechanically
copying answers. The system prioritizes returning code correction suggestions, followed by extended knowledge
links and related practice questions to help students better grasp the knowledge points.

102

Figure 2. Real-Time Code Analysis Flow
2.3 Engineering Assessment Module

Considering the defects of traditional programming platform test cases and the neglect of code standardization,
the platform's assessment dimensions have added scores for code standardization and maintainability. It also uses
large models to automatically generate boundary test cases (e.g., empty input, extreme value data) to supplement
the coverage blind spots of the pre-set cases in traditional platforms and fundamentally improve code robustness.
2.4 Adaptive Learning Path Planning Module

Traditional platforms' static resource recommendations lead to rigid learning paths. This platform builds a
dynamic knowledge graph based on students' programming behavior data to achieve personalized learning support.
It breaks the traditional platform's "mechanical repetition" training model and realizes a progressive training path
from single knowledge points to systematic engineering capabilities [7].
3 Performance Evaluation and Practical Application
3.1 Verification Design of Platform Efficiency in Teaching Scenarios

Traditional programming experiment teaching generally adopts a linear model of "task assignment -
independent practice - centralized Q&A": after the teacher assigns the experiment task and provides a brief
explanation, students independently complete the code writing in the computer lab, and the teacher provides
auxiliary Q&A through rounds of guidance. The experiment ends with students submitting their program design
code.

This teaching method leads to insufficient student computer time, low program debugging and learning
efficiency, and in a limited class time, teachers are often occupied by individual students' complex problems for a
long time, making it difficult to provide targeted guidance to most students. At the same time, due to the lack of

103

real-time feedback and progressive hints, students generally face problems such as low debugging efficiency and
slow knowledge internalization. Therefore, this teaching model hardly achieves "universal personalization" for
students.

To verify the actual efficiency of the platform in programming education, this study is based on the teaching
scenario of the Big Data Comprehensive Practice Course in our university. The post-class experiment questions
covering the entire process of data crawling and data cleaning in the course are selected as evaluation samples. The
course experiment tasks are shown in Table 1. By using the program code generated by the large language model
and submitting it to the judging system for verification, the students' performance in the last four weeks under the
platform-assisted teaching mode is compared with that in the first four weeks under the traditional experiment
teaching mode. Under the condition of similar experiment difficulty coefficients, the students' average experiment
scores have significantly improved, as shown in Table 2, which confirms the platform's promotion of students'
engineering abilities.

Table 1 Partial Experiment Task List of the Course

No. Experiment Item Experiment Type

1
Complete the deployment of the Java development environment under Linux and

the creation process of a Spring Boot project
Verification

2
Integrate the deployment of Linux environment, the collaborative tool chain of
Python/Kettle, and data cleaning technology to complete the entire process of

traffic data collection and preprocessing

Basic
Comprehensive

3
Deploy Hadoop clusters under Linux and practice HDFS file transfer tomaster the
basic architecture of distributed storage systems and the core operations of data

management

Basic
Comprehensive

4 Develop distributed computing programs based on the MapReduce framework
Basic

Comprehensive

5
Complete the deployment of Sqoop tools and the construction of MySQL database

table structures
Verification

6
Implement front-end and back-end data interaction and visualization presentation

based on the Java Web technology stack
Comprehensive

Design

Table 2 Analysis of Experiment Test Scores with Use of System

Experiment Section
Number of
students

Score
Difficulty
Coefficient

Percentage of
students who felt
systemwas helpful

1 30 95 1.0 70%

2 26 92 1.5 50%

3 30 95 1.4 50%

4 28 93 1.8 65%

104

5 29 92 1.8 45%

6 30 90 1.6 80%

In addition, this study conducted a questionnaire survey among 30 students who used the system. The survey
results show that 60% of students believe that with the assistance of large language models, they can better
understand the questions and obtain targeted programming guidance. Students generally believe that the system
can effectively diagnose their shortcomings, and the feedback and suggestions provided can greatly improve their
programming skills and problem-solving efficiency. Although some of the code assisted by the system still needs
adjustment, they believe that the reference suggestions obtained are very valuable. These feedback from students
further verify that the system plays a positive role in cultivating students' logical thinking, reasoning ability, and
innovative consciousness.
3.2 Risks of Misuse of Programming Platforms

Although large language models can bring significant benefits to higher education, they also come with potential
misuse risks[8,9]. Large language models significantly improve learning efficiency through instant knowledge supply,
enabling students to quickly master new programming languages and build technical frameworks. When dealing
with complex programming problems, these large model tools can not only provide innovative solutions but also
help cultivate students' logical thinking abilities. However, their convenience may also lead to over-reliance among
students, thereby neglecting the importance of independent thinking.

To address these challenges, the online programming experiment system integrated with AI large language
models developed in this project has imposed restrictions on interactions. In the error diagnosis module, the
platform will not directly provide complete code answers but will give specific improvement suggestions based on
the submitted code. Only after the user's code passes the verification will the system provide the complete
optimized code, allowing students to clearly understand the parts that need improvement. Through this design,
students can fully enjoy the benefits of large model tools while maintaining and cultivating their ability to solve
problems independently, avoiding becoming mere code generation tools. This system design and usage strategy
effectively reduces potential misuse risks while achieving educational goals.
4 Conclusion

This paper designs and implements an intelligent programming experiment system based on large language
models, targeting the deficiencies of traditional online programming teaching platforms in evaluation dimension
singularity, feedback delay, and insufficient interactivity. By integrating core functions such as code standardization
analysis, dynamic error diagnosis, and hierarchical guidance feedback, the platform effectively compensates for the
shortcomings of existing systems and provides a smarter andmore personalized programming learning
environment. Experimental results show that with the assistance of the platform, students' programming practice
abilities have significantly improved. Through interaction with AI models, students can understand complex
programming concepts while learning to deal with various challenges encountered in actual programming.
Therefore, this AI-integrated online programming experiment system not only has important educational
significance but also demonstrates broad application potential. It heralds the future direction of programming
education and provides a reference path for programming experiment teaching.

Acknowledgements
This work was supported by Zhejiang Higher Education Society Project "Artificial Intelligence Empowers

Education and Teaching Application Research" Special Project (No. KT2024464), Zhejiang University of Science and
Technology Teaching Research and Reform Project (No. 2023-jg16), and Zhejiang University of Science and
Technology Graduate Course Construction Project (No. 2021yjskj04).

105

References

[1] Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., Bin Saleh, K., ... & Albekairy, A. M. (2023).
The emergent role of artificial intelligence, natural learning processing, and large language models in higher
education and research. Research in social and administrative pharmacy, 19(8), 1236-1242.
[2] Savelka, J., Agarwal, A., Bogart, C., Song, Y., & Sakr, M. (2023, June). Can generative pre-trained transformers (gpt)
pass assessments in higher education programming courses?. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1 (pp. 117-123).
[3] Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT
for good? On opportunities and challenges of large language models for education. Learning and individual
differences, 103, 102274.
[4] Yu, J. H., Chang, X. Z., Liu, W., & Huan, Z. (2023). An online integrated programming platform to acquire students'
behavior data for immediate feedback teaching. Computer Applications in Engineering Education, 31(3), 520-536.
[5] Yan, Y. M., Chen, C. Q., Hu, Y. B., & Ye, X. D. (2025). LLM-based collaborative programming: impact on students’
computational thinking and self-efficacy. Humanities and Social Sciences Communications, 12(1), 1-12.
[6] Roy, D., Zhang, X., Bhave, R., Bansal, C., Las-Casas, P., Fonseca, R., & Rajmohan, S. (2024, July). Exploring
llm-based agents for root cause analysis. In Companion Proceedings of the 32nd ACM International Conference on
the Foundations of Software Engineering (pp. 208-219)..
[7] Strmečki, D., Magdalenić, I., & Radosević, D. (2018). A systematic literature review on the application of ontologies
in automatic programming. International journal of software engineering and knowledge engineering, 28(05),
559-591.
[8] Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for education and research: Opportunities, threats, and
strategies. Applied sciences, 13(9), 5783.
[9] Wen, W., & Wen, H. (2024). Bridging Generative AI Technology and Teacher Education: Understanding Preservice
Teachers' Processes of Unit Design with ChatGPT. Contemporary Issues in Technology and Teacher Education (CITE
Journal), 24(4), n4.

	Construction of a Large Language Model-Driven Onli
	Shengying Yang 1* Chen Lu 1 Fangfang Qian

