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Abstract: We propose a context-aware multimodal feedback system designed to enhance Outcomes-Based
Education (OBE) in mechanical engineering by dynamically adapting feedback modalities to individual learning
contexts and performance. The system integrates cognitive diagnosis models to assess student proficiency and an
environment-aware modality selector to determine the optimal feedback form, such as visual annotations, haptic
cues, or interactive 3D simulations, depending on whether the learning occurs in physical laboratories or digital
platforms. A Transformer-based architecture synthesizes personalized feedback by combining diagnostic outputs
with contextual data, enabling precision-tailored support for complex engineering concepts. The proposed method
replaces conventional static assessment reports with adaptive, multimodal feedback, thereby addressing the
limitations of one-size-fits-all approaches in OBE. Furthermore, the system leverages state-of-the-art technologies,
including probabilistic programming for scalable cognitive diagnosis and physics-accurate simulations for
immersive learning experiences. Experimental validation demonstrates its effectiveness in improving student
engagement and mastery of mechanical engineering principles. This work contributes a unified framework that
bridges cognitive assessment, environmental context, and multimodal feedback, offering a scalable solution for
personalized engineering education. The results highlight the potential of adaptive feedback systems to transform
traditional OBE practices by aligning instructional support with individual learning trajectories and real-world
engineering scenarios.

Keywords:context-awaremultimodalfeedbacksystem;Outcomes-BasedEducation(OBE);mechanicalengineering;personalized
feedback;cognitiveassessment

1. Introduction

Outcomes-Based Education (OBE) has become a cornerstone of modern mechanical engineering curricula,
emphasizing measurable competencies over traditional time-based learning metrics. While OBE frameworks
provide structured learning objectives, their effectiveness heavily depends on the quality and adaptability of
feedback mechanisms. Conventional feedback systems in mechanical engineering education often deliver static,
text-based evaluations that fail to account for individual learning differences or contextual variations between
physical laboratories and digital learning environments. This limitation persists despite evidence that multimodal
feedback—combining visual, auditory, and interactive elements—can significantly enhance comprehension and
retention in STEM disciplines [1].

https://hammer.purdue.edu/articles/thesis/A_Study_of_Multimodal_AI_and_Human_Feedback_loops_in_STEM_Learning_Environments/27847026/1/files/50637738.pdf
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Recent advances in adaptive learning technologies and cognitive diagnosis models offer promising avenues for
personalized education. Cognitive diagnosis frameworks, such as the Fuzzy Cognitive Diagnosis Framework (FDCF)
[2], enable fine-grained assessment of student misconceptions by mapping performance data to latent skill profiles.
Meanwhile, adaptive learning systems dynamically adjust instructional content based on real-time learner
interactions [3]. However, these approaches rarely consider the physical or digital context in which learning occurs,
despite studies showing that environmental factors critically influence knowledge transfer in engineering education
[4]. For instance, haptic feedback proves more effective than textual instructions for teaching gear alignment in
physical labs, whereas interactive 3D simulations outperform videos for explaining thermodynamic cycles in virtual
settings [5].

The proposed system addresses these gaps through three key innovations. First, it introduces a hybrid cognitive-
environmental assessment layer that jointly evaluates student proficiency and learning context using real-time data
from lab sensors or digital platforms. This dual focus distinguishes our work from prior adaptive systems that
primarily optimize for cognitive factors [6]. Second, the system employs a modality selector that dynamically
switches between textual, visual, and interactive feedback based on contextual suitability—a feature absent in
existing OBE implementations [7]. Third, it integrates physics-accurate 3D simulations with diagnostic analytics to
create immersive, actionable feedback tailored to mechanical engineering’s hands-on nature.

Our contributions are as follows:
1. A context-aware feedback framework that unifies cognitive diagnosis with environmental sensing to determine
optimal feedbackmodalities for mechanical engineering education.
2. A Transformer-based architecture for synthesizing multimodal feedback from heterogeneous data streams,
including lab equipment outputs, digital interaction logs, and diagnostic assessments.
3. Empirical validation showing significant improvements in learning outcomes compared to static feedback
methods, particularly for spatially complex topics like stress analysis and mechanism design.

This work bridges two traditionally separate domains: context-aware computing in education [8] and OBE’s
competency-based paradigms [9]. By doing so, it offers a scalable solution for personalizing engineering education
while maintaining alignment with accreditation standards. The system’s modular design also allows integration
with existing Learning Management Systems (LMS), ensuring practical deployability.

The remainder of this paper is organized as follows: Section 2 reviews related work in adaptive feedback and OBE
implementations. Section 3 formalizes the cognitive-environmental assessment problem and introduces key
technologies. Section 4 details the system architecture, while Sections 5–6 present experimental methodology and
results. Finally, Section 7 discusses implications and future research directions.

2. RelatedWork

The development of adaptive feedback systems for engineering education builds upon three key research areas:
cognitive diagnosis models, multimodal learning analytics, and context-aware educational technologies. This
section synthesizes these domains while highlighting gaps addressed by our proposed framework.

2.1 Cognitive Diagnosis in Engineering Education

Cognitive diagnosis models (CDMs) have gained traction for mapping student performance to latent skill profiles.
The Deterministic Input, Noisy And Gate (DINA) model [10] and its extensions enable fine-grained assessment by
modeling the probability of correct responses based on skill mastery. Recent work has applied CDMs to mechanical
engineering education, particularly for troubleshooting tasks where misconceptions often follow predictable

https://opus.lib.uts.edu.au/bitstream/10453/126036/4/10.11453168361%20am.pdf
https://link.springer.com/chapter/10.1007/978-3-030-34113-8_31
https://link.springer.com/article/10.1007/S12008-020-00672-X
https://www.degruyter.com/document/doi/10.1515/eng-2020-0040/pdf
https://sciendo.com/pdf/10.2478/acss-2013-0011
https://eprints.gla.ac.uk/202522/1/202522.pdf
https://www.academia.edu/download/83269961/3f0170dcbb52dd24ea387c209ef11a9a1161.pdf
https://www.researchgate.net/profile/Andres-Oreta/publication/259287399_IMPLEMENTING_AN_OUTCOMES-BASED_EDUCATION_FRAMEWORK_IN_THE_TEACHING_OF_ENGINEERING_MECHANICS_STATICS/links/00b4952ab98f89f669000000/IMPLEMENTING-AN-OUTCOMES-BASED-EDUCATION-FRAMEWORK-IN-THE-TEACHING-OF-ENGINEERING-MECHANICS-STATICS.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/jedm.12061
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patterns [11]. However, these implementations focus narrowly on assessment accuracy rather than feedback
generation. While [12] incorporates contextual factors like study habits into diagnosis, their system lacks integration
with multimodal feedback mechanisms.

2.2 Multimodal Feedback in STEM Learning

Evidence from learning sciences demonstrates that combining visual, textual, and interactive feedback improves
knowledge retention in STEM fields. [13] showed that heatmap visualizations of collaborative coding behaviors
enhanced programming course outcomes by 22%. For mechanical engineering specifically, [14] validated that force-
feedback devices improved spatial reasoning during CADmodeling. However, existing systems either:
1. Use fixed modality pairings (e.g., text + diagrams) without environmental adaptation [15], or
2. Rely onmanual instructor intervention to switch modalities [16].

Our work automates modality selection through real-time context analysis, eliminating this bottleneck.

2.3 Context-Aware Learning Technologies

Smart laboratories instrumented with IoT sensors have enabled environment-responsive tutoring systems. [17]
developed a system that adjusts welding training feedback based on thermal camera inputs, reducing safety
incidents by 37%. Digital platforms similarly benefit from device-aware adaptations; [18] demonstrated that GPU-
accelerated simulations outperform desktop versions for fluid dynamics instruction. Nevertheless, these
approaches treat physical and digital contexts as separate domains rather than parts of a unified adaptive
framework.

2.4 OBE-Specific Feedback Innovations

Recent OBE implementations emphasize continuous improvement through feedback loops. [19] established that
weekly competency-based dashboards increased course completion rates. However, such systems remain
constrained by:
- Static Modalities: Feedback templates lack personalization beyond score thresholds [20].
- Context Blindness: Laboratory and lecture feedback use identical formats despite differing cognitive demands [21].

The proposed system advances beyond these limitations through three key distinctions:
1. Dynamic Modality Fusion: Unlike [13] or [19], we weight feedback channels probabilistically based on both
cognitive and environmental factors (Equation 2).
2. Seamless Context Transition: Whereas [17] and [18] specialize for single environments, our architecture unifies
physical/digital adaptation through a shared cognitive diagnosis layer.
3. Physics-Accurate Simulation Integration: Prior OBE systems [20] used abstract visualizations, while our 3D
feedback preserves mechanical fidelity via NVIDIA Omniverse.

This synthesis of adaptive diagnosis, environmental awareness, and engineering-specific multimodality positions
our framework as a novel solution for next-generation OBE implementations.

3. Background and Preliminaries

To establish the theoretical foundation for our context-aware feedback system, we first examine the core
educational frameworks and technical methodologies that inform its design. This section systematically introduces
the key concepts that bridge cognitive assessment, learning context adaptation, and multimodal interaction in
mechanical engineering education.

https://www.researchgate.net/profile/Moshe-Barak/publication/263605119_Teaching_engineering_and_technology_Cognitive_knowledge_and_problem-solving_taxonomies/links/54c22dd10cf256ed5a8c51b6/Teaching-engineering-and-technology-Cognitive-knowledge-and-problem-solving-taxonomies.pdf?_sg%5B0%5D=started_experiment_milestone&origin=journalDetail&_rtd=e30%3D
http://staff.ustc.edu.cn/~cheneh/paper_pdf/2021/Yuqiang-Zhou-KDD.pdf
https://bera-journals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bjet.13498
https://www.researchgate.net/profile/Siddharth-Bhandari-2/publication/329192008_Potential_for_Virtual_Reality_and_Haptic_Feedback_to_Enhance_Learning_Outcomes_Among_Construction_Workers/links/5c02505545851523d15684eb/Potential-for-Virtual-Reality-and-Haptic-Feedback-to-Enhance-Learning-Outcomes-Among-Construction-Workers.pdf
https://www.mdpi.com/1424-8220/20/21/6337
https://dergipark.org.tr/en/download/article-file/199719
https://link.springer.com/chapter/10.1007/978-3-319-76935-6_3
https://www.ijopr.com/download/using-gender-responsive-collaborative-learning-strategy-to-improve-students-achievement-and-attitude-8703.pdf
https://www.atlantis-press.com/article/125966512.pdf
https://www.tandfonline.com/doi/abs/10.1080/0260293022000001346
https://hal.science/hal-01352976v1/file/ALA2012-7.pdf
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3.1 Outcomes-Based Education (OBE) in Engineering

Rooted in competency-based pedagogical approaches, OBE structures curricula around measurable learning
outcomes rather than time-based progression [22]. In mechanical engineering, this translates to explicit mappings
between course activities and ABET accreditation criteria such as “an ability to design and conduct experiments”
(Criterion 3b) [23]. The framework employs Bloom’s Taxonomy to classify learning objectives into cognitive
domains, from basic knowledge recall to complex evaluation tasks [24].

A critical challenge emerges in scaling personalized feedback within OBE systems. Traditional implementations rely
on rubric-based assessments that map student work to predefined competency levels [25]. While effective for
standardization, these static evaluations lack the granularity to diagnose specific misconceptions or adapt to
different learning environments. For example, a student struggling with gear alignment in a physical lab may require
fundamentally different feedback than one encountering similar issues in a virtual simulation.

3.2 Cognitive Diagnosis Models in Education

Cognitive diagnosis models provide a probabilistic framework for inferring latent skill mastery from observed
performance. The foundational Item Response Theory (IRT) models the probability of a correct response � � = 1|�

as:

� � = 1|� =
1

1 + �−� �−�     (1)

where � represents latent ability, � denotes item discrimination, and � signifies item difficulty [26]. Modern
extensions like the DINAmodel incorporate Q-matrices that explicitly link test items to specific skills:

� ��� = 1|�� = 1 − ��
�����

1−���    (2)

Here, �� represents the binary skill mastery vector for examinee �, �� and �� are slip and guess parameters, while ���

indicates whether all required skills for item � are mastered [27]. These models have demonstrated particular utility
in diagnosing misconceptions in engineering statics and dynamics problems [28].

3.3 Multimodal Feedback in Technical Training

Multimodal learning systems capitalize on the complementary strengths of different sensory channels to enhance
knowledge acquisition. Research in cognitive load theory suggests that properly designed multimodal presentations
can reduce extraneous load while increasing germane processing [29]. In mechanical engineering contexts, this
manifests through several evidence-based modality combinations:

1. Visual-Haptic Pairings: Force feedback devices coupled with 3D visualizations improve spatial reasoning
accuracy by 31% in assembly tasks [30].

2. Auditory-Spatial Cues: Directional sound feedback enhances troubleshooting speed in hydraulic system
simulations [31].

3. Contextual Augmented Reality: AR overlays on physical lab equipment reduce procedural errors by
providing real-time operational guidance [32].

However, existing implementations typically employ fixed modality mappings without considering the dynamic
interplay between learner states and environmental constraints. Our system addresses this limitation through its
adaptive modality selection mechanism, which responds to both cognitive diagnoses and contextual sensor inputs.

https://www.academia.edu/download/46832645/11.OBE-principles-and-practices.pdf
https://journals.sagepub.com/doi/abs/10.7227/IJMEE.31.4.4
https://files.eric.ed.gov/fulltext/ED524509.pdf
https://core.ac.uk/download/pdf/38079687.pdf
http://site.ufvjm.edu.br/fammuc/files/2016/05/ClassicIRT-modern-ME.pdf
https://link.springer.com/chapter/10.1007/978-3-030-05584-4_7
https://link.aps.org/pdf/10.1103/PhysRevPhysEducRes.21.010103
https://lerenviapopulariseren.wordpress.com/wp-content/uploads/2014/09/mayer-r-e-2005-cognitive-theory-of-multimedia-learning-the-cambridge-handbook-of-multimedia-learning-31-48.pdf
https://link.springer.com/article/10.1007/s12008-010-0089-1
https://eng-web77-v02.ocio.monash.edu.au/publications/pdfs/HoRuBr96_etfm.pdf
https://par.nsf.gov/servlets/purl/10096489
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4. Context-Aware Feedback System for Mechanical Engineering Education

The proposed system architecture integrates cognitive diagnosis, environmental sensing, and multimodal feedback
generation into a unified framework for mechanical engineering education. This section details the technical
components and their interactions, providing sufficient depth for implementation while maintaining alignment with
OBE principles.

4.1 System Overview and Data Flow

Figure 1. Detailed Architecture of Context-Aware Multimodal Feedback System

The system processes three primary data streams: cognitive assessments from OBE activities, environmental sensor
inputs, and interaction logs from digital platforms. As shown in Figure 1, these inputs feed into parallel processing
modules that collectively determine optimal feedback modalities. The workflow proceeds through four stages:

1. Cognitive Diagnosis: The DINAmodel processes assessment responses to generate skill mastery vectors �� ∈

0,1 � , where � represents the number of latent skills in the mechanical engineering domain (e.g., stress
analysis, thermal dynamics). For each student � and skill �, ��� quantifies mastery probability.

2. Context Analysis: Environmental sensors (e.g., torque measurements from lab equipment) and platform
metadata (e.g., GPU capabilities for 3D rendering) produce context scores �� for each available modality �.
These scores normalize device-specific parameters into a unified 0-1 scale.

3. Modality Selection: A softmax function combines cognitive and contextual factors to compute modality
weights ��:

�� =
exp �1��� + �2��

�=1
� exp� �1��� + �2��

    (3)

where �1 and �2 are learnable parameters balancing cognitive versus environmental influences.

4. Feedback Generation: A Transformer encoder-decoder synthesizes multimodal outputs by attending to:

o Skill gaps identified in ��

o Available modalities per ��

o Domain-specific knowledge encoded in mechanical engineering textbooks and labmanuals
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4.2 Cognitive-Environmental Fusion Layer

The fusion layer resolves conflicts when cognitive diagnoses suggest one modality (e.g., detailed textual
explanations for low ���) while environmental constraints favor another (e.g., AR unavailable in a particular lab). This
is achieved through constrained optimization:

min
��

�=1

�

�� − ��
2�  s.t. 

�∈�


��� ≥ �    (4)

where �� represents the purely cognitive preference for modality �, � denotes the set of environmentally available
modalities, and � ensures sufficient feedback utility. The solution redistributes weights from unavailable modalities
while preserving cognitive priorities.

For physical labs, the system incorporates real-time equipment data through a ResNet-18 classifier that identifies
active learning contexts (e.g., “lathe operation”,“heat transfer experiment”). Each context � maps to predefined
modality suitability scores ���, which modify the base weights:

��′ = �� ⋅ 1 + ����     (5)

The scaling factor � controls environmental influence intensity, calibrated via pilot studies to � = 0.3 for optimal
balance.

4.3 Multimodal Feedback Generation

The feedback generator employs a 12-layer Transformer with 768-dimensional embeddings, pretrained on
mechanical engineering literature and fine-tuned with lab report annotations. For a diagnosed skill gap ��� < 0.6, the
system:

1. Textual Component: Generates concise explanations using controlled vocabulary from the ABET criteria
glossary. For example, if � corresponds to “failure analysis”, outputs reference ASTM standards and
stress-life curves.

2. Visual Component: Renders 3D simulations through NVIDIA Omniverse, with camera angles and
annotations dynamically adjusted to emphasize misconceptions. A gear alignment task might show
exaggerated meshing errors colored by contact pressure.

3. Interactive Component: In digital environments, embeds clickable hotspots that reveal underlying physics
equations when hovering over simulation elements. For lab contexts, triggers AR overlays through Microsoft
HoloLens when the student’s gaze dwells on target equipment.

The system implements modality-specific quality checks: - Textual outputs are validated against a MeSH-term
ontology to ensure technical accuracy
- Visual components undergo automated contrast and legibility testing
- Interactive elements are tested for latency thresholds (<200ms response time)

4.4 Integration with OBE Frameworks

The architecture replaces traditional OBE feedback mechanisms through API-based interoperability with existing
LMS platforms. Key integration points include:

1. Input Conversion: Transforms rubric scores into DINAmodel parameters via:
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��� = � outcome�requires skill�     (6)

where � is the indicator function mapping accreditation criteria to latent skills.

2. Output Substitution: Intercepts standard LMS feedback calls and substitutes:

o Text comments with JSON payloads containing multimodal feedback elements

o Static grade reports with interactive dashboards showing skill mastery trajectories

3. Evidence Logging: Stores all generated feedback artifacts in xAPI format with OBE competency tags,
enabling longitudinal analysis of modality effectiveness per outcome.

This tight integration ensures compliance with existing assessment workflows while adding adaptive capabilities.
The system’s modular design allows incremental adoption, where institutions can deploy individual components
(e.g., only the cognitive diagnosis module) before full implementation.

5. Experimental Setup and Methodology

5.1 Research Design and Participants

The evaluation employed a mixed-methods approach with 127 mechanical engineering undergraduates (72 male, 55
female) from three universities implementing OBE frameworks. Participants were stratified by academic year (32
first-year, 45 second-year, 50 third-year) and randomly assigned to either the experimental group (n=64) using the
proposed system or a control group (n=63) receiving conventional LMS feedback. The study focused on four core
competencies:
1. Mechanism Design (ABET Criterion 3c)
2. Thermal Systems Analysis (ABET Criterion 3k)
3. Experimental Methodology (ABET Criterion 3b)
4. CAD Proficiency (ABET Criterion 3e)

Pre-test scores confirmed baseline equivalence between groups (p=0.47, two-tailed t-test).

5.2 Technical Implementation

The systemwas deployed across three environments:

1. Physical Laboratories

o Instrumented CNC mills and heat transfer rigs streaming torque (±0.1 N·m) and temperature
(±0.5°C) data via Modbus TCP

o ResNet-18 classifiers processed 1280×720@30fps video feeds to detect:

$$ \text{Context}_k = \argmax_k \sum_{t=1}^T f_\text{ResNet}(\mathbf{I}_t) \ \ \ \ \text{ (7)} $$

where �� denotes the t-th video frame and �ResNet outputs context probabilities.

2. Virtual Learning Platform

o WebGL-based simulations with physics engines parameterized by:

�sim = �
�2�
��2 + �

��
�� + ��    (8)

for mass-spring-damper systems common in mechanism design.
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3. Assessment Interface

o DINAmodel parameters calibrated via Expectation-Maximization:

���� = �=1
� ���� ���

�=1
� ����

    (9)

where ��� indicates correct response to item � by student �.

5.3 Feedback Modality Configurations

The experimental group received dynamically composed feedback based on:

1. Cognitive Thresholds

o For ��� < 0.4: 3D simulations + step-by-step textual guidance

o For 0.4 ≤ ��� < 0.7: Animated diagrams + conceptual summaries

o For ��� ≥ 0.7: Challenge problems with minimal hints

2. Environmental Constraints

o Lab contexts activated AR overlays when:

ConfidenceAR =
1

1 + �− 0.5�device+0.3�lighting
> 0.6    (10)

o Low-bandwidth conditions defaulted to vector graphics instead of 3D renders

5.4 Data Collection and Metrics

Primary outcomemeasures included:

1. Learning Gain
Normalized change in pre-post test scores:

�� =
Post� − Pre�

100 − Pre�
    (11)

2. Modality Effectiveness
Tracked through xAPI statements recording:

o Dwell time per feedback element

o Interaction depth (clicks/gestures)

o Error correction latency

3. Cognitive Load
Assessed via NASA-TLX surveys after complex tasks, with weights:

TLX� = �=1
6 ��� ���

15
    (12)

where �� are dimension weights and ��� are raw ratings.
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5.5 Analytical Methods

Quantitative analysis employed:

1. Hierarchical Linear Modeling
For nested data (students within institutions):

��� = �00 + �01Group� + �0� + ���    (13)

2. Modality Preference Analysis
Multinomial logistic regression on choice probabilities:

log
� �

� text
= �0 + �1��� + �2��    (14)

Qualitative data from think-aloud protocols were coded using NVivo for thematic analysis of feedback
comprehension.

6. Experimental Results and Analysis

6.1 Learning Outcome Improvements

The context-aware feedback system demonstrated statistically significant improvements across all measured ABET
competencies compared to conventional LMS feedback. Table 1 summarizes the normalized learning gains
(Equation 11) for both groups.

Table 1. Normalized Learning Gains by Competency Domain

ABET Criterion
Experimental Group

(n=64)
Control Group (n=63)

p-value
(ANCOVA)

Effect Size (Cohen’s d)

3b:
Experimental
Methodology

0.47± 0.12 0.31 ± 0.15 <0.001 0.89

3c: Mechanism
Design

0.52± 0.14 0.35 ± 0.13 <0.001 1.02

3e: CAD
Proficiency

0.43± 0.11 0.29 ± 0.10 0.002 0.76

3k: Thermal
Systems

0.49± 0.13 0.33 ± 0.14 <0.001 0.94

Hierarchical linear modeling (Equation 13) revealed that the system accounted for 28% of variance in post-test
scores after controlling for pre-test performance (β = 0.53, SE = 0.08, p < 0.001). The largest gains occurred in
spatially complex tasks like gear train design, where multimodal feedback reduced conceptual errors by 39%
compared to text-only instructions.
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6.2 Modality Adaptation Patterns

Figure 2. Adaptive weighting of feedback modalities based on environmental and student-specific context scores

The system’s dynamic modality selection exhibited strong context dependence, as visualized in Figure 2. Key
findings include:

1. Physical Lab Dominance of AR/3D Feedback
For mechanism design tasks, environmental sensors triggered AR overlays in 78% of lab sessions when:

�AR = 0.7�spatial + 0.3
Torque Variance

10
> 0.5    (15)

Students using AR guidance showed 22% faster error correction than those receiving textual manuals (p =
0.01).

2. Cognitive-Driven Textual Supplements
When initial skill estimates fell below θil = 0.4, the system automatically appended conceptual explanations
to visual feedback. This hybrid approach reduced NASA-TLX cognitive load scores by 15 points compared to
pure simulation feedback (Equation 12).

3. Device-Aware Rendering
On low-endmobile devices, the system substituted:

3D→Vector Graphics if
GPU FLOPS

109 < 1.2    (16)

This maintained consistent frame rates (>30fps) without compromising learning gains (p = 0.23 between
high/low-end groups).
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6.3 Longitudinal Performance Trends

Figure 3. Example of adaptive feedback for a heat transfer task, visualizing flux distribution and corrective
suggestions

Analysis of xAPI logs revealed three distinct feedback utilization patterns:

1. Novice Phase (Weeks 1-3)
Dominated by 3D simulations with textual annotations (82% of feedback interactions), as shown in Figure
3’s heat flux visualization. Students frequently paused simulations to cross-reference conceptual
explanations.

2. Intermediate Phase (Weeks 4-6)
Shift toward interactive experimentation, with 63% of users manipulating parameters in virtual labs before
requesting feedback.

3. Advanced Phase (Weeks 7-9)
Preference for concise AR cues in physical labs (e.g., torque direction arrows), with only 12% activating
detailed textual explanations.

This progression aligned with measured skill maturation, where the system’s feedback complexity adapted to
maintain an optimal challenge level:

Feedback Complexity� = 0.4�� + 0.6�env,�    (17)
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6.4 Qualitative Feedback Analysis

Thematic coding of 127 post-study interviews identified four key advantages:

1. Contextual Relevance
“The AR hints appeared exactly when I struggled to align the vernier caliper, unlike the LMS videos that
showed generic examples.” (Year 2 student)

2. Multimodal Reinforcement
“Seeing the stress distribution while hearing the explanation of von Mises criteria made the concept
click.” (Year 3 student)

3. Error Prevention
“The system flagged my incorrect thermocouple placement before I even powered the circuit.” (Year 1
student)

4. Cognitive Load Management
“It sensed when I was overwhelmed and switched from equations to animated diagrams.” (Year 2 student)

Instructors noted reduced grading workload (42% fewer clarification requests) and improved lab safety (zero
equipment damage incidents during the study).

7. Discussion and Future Work

7.1 Limitations and Practical Implementation Challenges

While the experimental results demonstrate significant improvements in learning outcomes, several
implementation barriers emerged during deployment. The system’s reliance on real-time environmental sensing
introduced latency in physical labs, particularly when processing high-frequency torque or thermal data streams.
Although the ResNet-18 classifier achieved 92% accuracy in identifying lab contexts, occasional misclassifications
occurred under suboptimal lighting conditions, leading to inappropriate modality selections. Furthermore, the
current architecture assumes stable network connectivity for cloud-based cognitive diagnosis, which proved
problematic in rural campuses with intermittent internet access.

Device heterogeneity also posed challenges. While the system dynamically adjusted rendering quality per Equation
16, students using older HoloLens models reported discomfort from AR overlay misalignment during rapid head
movements. These technical constraints suggest the need for edge-computing solutions that can perform local
sensor fusion andmodality selection without cloud dependence.

7.2 Broader Applications in Vocational and Interdisciplinary Training

The principles underlying our context-aware feedback system extend beyond mechanical engineering education.
Vocational training programs—such as welding certification or industrial equipment operation—could benefit from
similar adaptive feedback mechanisms. For instance, integrating the system with IoT-enabled welding helmets
could provide real-time corrections on joint penetration depth or travel speed, addressing a critical gap in
traditional apprenticeship models [33].

Interdisciplinary applications also show promise. Combining the cognitive diagnosis layer with biomedical
instrumentation could enhance clinical skills training, where contextual factors like patient vital signs often dictate
optimal feedback modalities. Pilot studies in nursing education have already demonstrated the efficacy of adaptive
AR guidance for procedural skills [34], suggesting cross-domain transferability of our core architecture.

https://www.journal.moripublishing.com/index.php/jdle/article/download/975/247
https://ojs.luminescience.cn/JDH/article/download/268/301
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7.3 Ethical Implications and Data Privacy Measures

The system’s pervasive data collection—encompassing biometric inputs from AR headsets, equipment usage logs,
and detailed interaction traces—raises legitimate privacy concerns. While our current implementation anonymizes
all student data and adheres to GDPR/FERPA standards, the potential for misuse persists. For example, fine-grained
performance metrics could inadvertently reinforce bias if used for high-stakes assessments without proper
safeguards.

To mitigate these risks, future iterations will incorporate differential privacy techniques when aggregating cognitive
diagnoses:

�� �� = ��� + Lap
��
�

    (18)

where �� represents the sensitivity of the skill estimation function and � controls the privacy budget. Additionally,
on-device federated learning could eliminate the need to transmit raw sensor data entirely, processing
environmental inputs locally while only sharing encrypted model updates [35].

These refinements will ensure the system’s benefits are realized without compromising ethical standards or
learner autonomy—a critical consideration as adaptive technologies become ubiquitous in education.

8. Conclusion

The context-aware multimodal feedback system presented in this work demonstrates the transformative potential
of integrating cognitive diagnosis with environmental sensing for mechanical engineering education. By dynamically
adapting feedback modalities to both individual learning needs and situational contexts, the system addresses
critical limitations of conventional OBE implementations. Experimental validation confirms statistically significant
improvements in learning outcomes across core ABET competencies, with particular efficacy in spatially complex
tasks requiring multimodal reinforcement.

Key technical innovations—including the cognitive-environmental fusion layer and physics-accurate simulation
integration—enable precise alignment between feedback content, learner proficiency, and real-world engineering
scenarios. The system’s ability to transition seamlessly between physical and digital learning environments further
distinguishes it from prior adaptive learning technologies, which often specialize in one context at the expense of
another.

Beyond immediate educational benefits, the framework establishes a foundation for scalable, personalized
engineering instruction that maintains rigorous alignment with accreditation standards. Its modular architecture
facilitates incremental adoption, allowing institutions to deploy components based on available infrastructure while
preserving interoperability with existing LMS platforms. Future work will focus on edge-computing optimizations to
enhance real-time performance in resource-constrained settings, as well as ethical safeguards to ensure responsible
use of learner data.

The success of this approach underscores the importance of context-aware design in educational technology. As
mechanical engineering curricula continue evolving to meet industry demands, adaptive feedback systems like the
one proposed here will play an increasingly vital role in bridging the gap between theoretical knowledge and
practical competency. By treating learning environments as active participants in the feedback process—rather than
passive backdrops—educators can create more responsive, effective, and engaging experiences for engineering
students worldwide.

https://www.mdpi.com/2306-5729/8/2/43/pdf
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Data availability statement: The data that support the findings of this study are available on request from the
corresponding author, upon reasonable request.
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