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Abstract: The state of charge (SOC) of lithium batteries is one of the key parameters to ensure their safe operation. In
response to the traditional untraceable Kalman filtering (UKF) algorithm in the process of estimating the state of
charge (SOC), the covariance matrix is non-positively determined, which leads to the termination of the algorithm. In
this paper, an improved trace-free Kalman filtering method with singular value decomposition Unscented Kalman
filtering (SVD-UKF) is proposed to estimate the SOC. singular value decomposition is used instead of Cholesky
decomposition to improve the accuracy and stability of SOC estimation. First, a second-order RC equivalent circuit
model is established, a lithium battery experimental platform is built to obtain charge/discharge data, and the
parameters of the second-order RC model are identified by combining the hybrid pulse charge/discharge test and
the 1stopt software, and then the battery SOC estimation is carried out by using the improved untraceable Kalman
filtering algorithm, and the SVD-UKF estimation results have a smaller error with the actual value compared with the
traditional UKF through experimental analysis, the estimation accuracy is high, and the real value can be converged
quickly when the initial value is inaccurate, and the average absolute error is reduced by about 14.5% compared
with the traditional UKF, which has good accuracy and robustness.
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1. Introduction
Lithium-ion batteries are widely used in electric vehicles, portable electronic devices and energy storage

systems due to their high energy density, long life and environmental friendliness. However, in order to ensure the
safety and longevity of batteries, it is crucial to accurately estimate their state-of-charge (SOC), which reflects the
amount of charge remaining in the battery and is one of the core parameters in a battery management system
(BMS)[1]. Accurate SOC estimation not only prevents overcharging or overdischarging, but also improves energy
utilization and extends battery life[2].

Currently, common SOC estimation methods include the ampere-time integration method, open-circuit voltage
method, data-driven method, and Kalman filter method. However, the complex electrochemical characteristics of
lithium batteries make these methods have certain limitations in practical applications. The ampere-time
integration method is used to estimate the SOC by integrating the battery current over time, which has the
advantage of being simple to implement and convenient to calculate, but its accuracy depends on the precision of
the initial SOC value, and it is susceptible to the effect of the accumulated error of the current noise in long-time
operation. The open-circuit voltage method establishes the relationship between open-circuit voltage and SOC by
utilizing the open-circuit voltage test data of the battery in the offline state[3]. This method can only achieve accurate
estimation when the battery is in a long-term resting state. The data-driven method estimates the SOC by fitting a
functional relationship between the battery terminal voltage value, current value, temperature value, other input
parameters, and the SOC value. however, the data-driven method requires higher data quality and larger data
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volume. Therefore, there are still great difficulties in practical applications[4].
The Kalman filter (KF) algorithm has become one of the popular methods for SOC estimation in recent years due

to its ability to adapt to a wide SOC range and effectively reduce the effects of measurement errors and sensor
noise[5]. KF solves the estimation problem of a system by equating the state equations in the circuit. However, when
the system presents nonlinearity, LKF cannot provide satisfactory estimation results.The UKF algorithm updates the
corrected a posteriori estimate and covariance by selecting a set of sampling points that satisfy specific
requirements.Especially in the strong nonlinear filtering system, the filtering effect of UKF is more significant
compared to EKF[6]. It is worth noting that when using the UKF algorithm, the error covariance matrix must be a
positive definite matrix; a non-positive definite error covariance matrix will cause the system to diverge, resulting in
the UKF algorithm not being able to proceed.

In order to further improve the estimation accuracy and stability, this paper proposes an improved trace-free
Kalman filtering method using the UKF algorithm as the basis and the singular value decomposition instead of the
Cholesky decomposition to estimate the SOC of the battery, and analyzes the performance of the method under real
working conditions through experiments and simulations to evaluate its potential application in battery
management systems. management system.

2. Lithium battery equivalent model and parameter identification
2.1 Lithium battery equivalent model design
The battery model can effectively simulate the operating characteristics of lithium-ion batteries during the

charging and discharging process, which is crucial for the analysis, management and control of the battery state. An
accurate battery model can not only better reflect the electrochemical process inside the battery, but also provide a
solid foundation for the accurate estimation of the battery state of charge (SOC)[7]. In this paper, the Thevenin
equivalent model and the RC parallel network are chosen to characterize the polarization response of the battery,
which can effectively describe the dynamic characteristics of the battery during charging and discharging, especially
its nonlinear features.

In order to better simulate the polarization process and the dynamic response behavior of the battery,
especially in the transition stage of battery charging and discharging, a model that can accurately reflect the
polarization process is needed. Therefore, in this paper, the second-order RC equivalent model is selected on the
basis of balancing model accuracy and computational resources. By introducing two RC parallel networks, the
second-order RCmodel is able to more accurately describe the complex dynamic response behavior of lithium-ion
batteries during the polarization process, especially the performance of the characteristics under multiple time
constants[8]. Compared with the first-order RCmodel, the second-order model is able to capture more information
about the battery dynamics, thus better reflecting the battery characteristics under fast charging and discharging
conditions and improving the overall accuracy of themodel. As shown in Fig. 1, the open-circuit voltage of the
battery is denoted as UOC, the resistor R0 represents the internal resistance of the battery, U0 is the voltage across the
ohmic internal resistance, I is the load current of the battery, and Vb while is the terminal voltage of the battery. The
two RC networks in the model consist of resistor R1R2, and capacitor C1C2, respectively, which are used to
characterize the polarization process and dynamic properties of the battery at different time constants. The
corresponding voltage sums represent the dynamic responses of the two RC networks. With these two RC parallel
networks, the second-order RCmodel is able to capture the complex electrochemical processes inside the battery
while maintaining a low computational complexity[9].
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Fig. 1 Second order RC equivalent circuit model of lithium battery
Can be obtained from Kirchhoff's law:
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The SOC of a lithium battery is defined as the ratio of its residual capacity to its rated capacity, and is calculated
by the following formula:

00SOC( ) SOC( ) dt
t

n

It t t
Q
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   (4)

Where:t-time;SOC(t)-t moment lithium battery SOC value;SOC(t0)-t0 moment lithium battery SOC value; η
-Coulomb efficiency,η=1;Qn-rated capacity of lithium battery.

2.2 Parameter Identification
2.2.1 Battery SOC-OCV relationship curve
Before the estimation of the SOC of lithium battery, it is necessary to identify the parameters of its equivalent

circuit model, and the object is the saturation voltage of 4.2V, cut-off voltage of 2.5V, the capacity of 2000mA-h
lithium ternary battery as a study. The experimental platform is shown in Fig. 2.

Fig. 2 Battery test platform
Firstly, the mixed pulse power characterization (HPPC) experiments were conducted at a constant temperature

of 25℃ with reference to the “ FreedomCar Power-Assisted Battery Test Manual ” , and the purpose of the
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experiments was to determine the relationship between the UOC and SOC of Li-ion batteries and to identify the
parameters of Li-ion battery models.

Experimental steps: constant current and constant voltage charging to the cut-off current, stationary for 2h,
discharge at a constant current of 0.5C (1000mA) for 12min, stationary for 2h, cyclic discharge until the end of the
cut-off voltage, and record the changes in voltage and current. As shown in Figure 3.

Fig. 3 HPPC current and voltage curves
The relationship equation of SOC-OCV was obtained by HPPC experiment and the curve is shown in Fig. 4.

Fig. 4 SOC-OCV relationship plot
A 6th order polynomial was fitted to the SOC-UOC curve to characterize the functional relationship between

UOC and SOC:
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2.2.2 Parameter Identification by Joint 1stopt Software
Parameter identification can be divided into offline identification and online identification, in which offline

identification can make full use of the precise data under experimental conditions, thus ensuring the accuracy of the
identification results. In this paper, the method of exponential fitting combined with 1-Stopt software is adopted to
carry out offline parameter identification of lithium batteries. Using the HPPC data measured under laboratory
conditions as the basis, the internal parameters of the battery are recognized by fitting. As shown in Fig. 5, a certain
voltage curve in the HPPC experiment is illustrated as an example.
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Fig. 5 End voltage response curve
Ohmic internal resistance R0 identification:
At the beginning and end of the discharge, the battery has not yet polarized. The abrupt changes between

points A to B and C to D are due to the ohmic internal resistance. Therefore, R0 can be expressed as:
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The voltage of the battery will rise slowly until stabilized in a period of time when the battery is stationary after
pulse discharge, and the voltage response of the RC circuit at this moment is the zero-input response. The slow rise
of the terminal voltage in the DE section indicates the polarization response process of R1C1 and R2C2. The equation
for the terminal voltage is:

1 1( / ) ( / )
1 2

t t
b OCV U U e U e     (7)

In the above equation, the initial voltages of the two RC links U1 and U2, and represent the time constants of
each RC parallel circuit. The time constant is expressed as:
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The custom fit function can be expressed as:
exp( ) exp( )y a b ct d ft       (9)

Based on the experimental data obtained from the Hybrid Pulsed Power Characterization (HPPC) test
experiments, the terminal voltage data for the segment of SOC from 100% to 90% were first selected and these
experimental data were imported in MATLAB. Next, variables with time as the horizontal coordinate and end voltage
as the vertical coordinate were created and the data were simplified as necessary for fitting analysis. Subsequently,
the CurveFitting toolbox of MATLAB was utilized to select a custom fitting function for fitting analysis, which was in
the form of an exponential function. In order to further improve the fitting accuracy, the other four unknown
parameters in the model can be optimized with the help of 1stOpt software to determine the initial values, and the
obtained optimized parameters are then returned to MATLAB for initialization and final determination of the
parameter values. The same steps can be used for other SOC intervals, and the corresponding resistance,
capacitance and other parameters are solved sequentially to construct a complete battery equivalent circuit model.
The parameters are identified using 1stopt software and the fitted relational equation in MATLAB, and the results of
parameter identification are shown in Table 1.

Table 1 Parameter identification results

SOC R0/Ω R1/Ω C1/F R2/Ω C2/F
0.1 0.086 0.01714 391 0.008 293289



84

0.2 0.2525 0.01133 189605 0.0198 6022
0.3 0.0249 0.01588 2872 0.009091 146723
0.4 0.02395 0.00716 277112 0.01398 3288
0.5 0.0231 0.01676 133391 0.01419 7620
0.6 0.0237 0.01562 82874 0.02394 7229
0.7 0.0235 0.02379 2446 0.007319 244157
0.8 0.02305 0.01806 2035 0.00624 327923
0.9 0.0226 0.01379 1994 0.00523 258839

2.3 Model Validation
In order to verify the accuracy of the battery model and the accuracy of the identification results, the battery

simulation model is built in MATLAB/Simulink, and the internal parameters obtained from the offline identification
are brought in, and then the accuracy can be proved by comparing the end voltages of the experiment and the
simulation. This time, the current under HPPC working condition is used as input, and the comparison of simulated
and experimental end voltages obtained are shown in Figures 6 and 7.

Fig. 6 Comparison curve of model end voltage

Fig. 7 Model end voltage error curve
From the above figure, it can be found that the model error only increases significantly at the end of discharge,

which is caused by the intense chemical reaction inside the battery, and the terminal voltage error at the rest of the
stages is within 0.04 V, which meets the battery model accuracy requirements. It proves that the constructed battery
model has high accuracy and parameter identification accuracy, which lays the foundation for the next step of
battery SOC estimation.

3.SVD-UKF Estimation of Battery SOC
3.1 UKF algorithm
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UKF is based on the untraceable (UT) transform, which can estimate the battery condition more accurately. The
basic principles of UT transform and UKF and the UKF process for estimating battery SOC are given below.

UT transform is the key step of UKF, and 2n+1 Sigma points can be obtained by sampling according to the
symmetric distribution. The formula is shown in the following equation.
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Where, is the dimension of the state variable; is the dispersion factor, the selection of which determines the
proximity between the sampling points and the mean value, and usually takes a positive number between 10-6~1; is
the distribution factor of the calibration front, and =2 is the optimal for Gaussian distribution; is the auxiliary scale
factor to satisfy the value of 0; and is the scale parameter, and is the scaling parameter, and is the scaling parameter,
and is the scaling parameter, and the scaling parameter, and is the scaling parameter. Reasonable adjustment of
and can improve the estimation accuracy of the algorithm.

Nonlinear Transfer Processing of Sigma Point Sets.
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UKF estimates the battery SOC process as follows:
(1) Initialize state variable means and covariances:
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(2) Condition prediction:
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(3) Temporal updating of state variable error covariances:
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(4) Temporal updating of error covariances:
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(5) Calculate the Kalman gain:
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, ,/k Xy k yy kK P P (19)

(6) Update the state variables and covariance matrix of the system:
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3.2 The SVD-UKF algorithm
The first step of the UKF algorithm is to perform a traceless transformation of the state variables at the previous

moment, where the central step is to obtain the square root of the covariance matrix P . A common method for
calculating the square root of the matrix is the Cholesky transformation, but this method is only valid when the
matrix is semi-positive definite. In real working conditions, the covariance matrix P may be non-positive definite due
to unknown noise and computational errors, which leads to the dispersion of the algorithm.

A singular value decomposition of the error covariance matrix is performed:
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Where p denotes the matrix to be decomposed, U and V are two orthogonal matrices, and V is a diagonal matrix
which can be rewritten as:
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This can be obtained using the combination of Eq. (22) and Eq. (10):
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4.Simulation Verification and Analysis
The improved traceless Kalman filter algorithm is used to estimate the SOC of the Li-ion battery. The initial

value of SOC is defined as 0.9, which is used to verify the convergence of the SVD-UKF algorithm. The estimation
accuracy of UKF and SVD-UKF is compared by using the ampere-time integration method as the real estimation
result, and the estimation results are shown in Fig. 8 and Fig. 9.

Fig. 8 SOC curve
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Fig. 9 SOC error curve
Table 2 Comparison of UKF and SVD-UKF errors

Algorithm Mean absolute
error

Maximum
absolute error

Root mean
square error

UKF 1.3154% 3.6748% 1.7269%
SVD-UKF 1.1234% 3.6102% 1.5603%

As can be seen from the figure and table, the SVD-UKF algorithm has significantly better accuracy than the UKF
algorithm in estimating SOC. Whether in terms of average absolute error, maximum absolute error or root mean
square error, SVD-UKF performs better.The SVD-UKF algorithm converges faster during the estimation process,
especially during the time period of larger error, SVD-UKF can adjust its estimation value more quickly to make it
closer to the real value. Compared with the traditional UKF, the average absolute error is reduced by about 14.5%,
the maximum absolute error is reduced by about 1.7%, and the root mean square error is reduced by about 9.6%.

The covariance matrix P is changed to P = -1e-2*diag([1 1 1]), at this time the covariance matrix is a non-positive
definite matrix to judge the stability of the SVD-UKF algorithm, and at this time, the initial value is changed to 0.8 to
judge the robustness of the SVD-UKF. The results are shown in Fig. 10.

Fig. 10 SVD-UKF estimated SOC curve
From the figure, we can see that when the covariance matrix is a non-positive definite matrix and the initial

value is large, the SVD-UKF algorithm can still run normally and converge to the real value quickly, which proves that
the algorithm has good stability and robustness.

5. Conclusions
In this paper, the equivalent circuit model of the second-order RC equivalent circuit of the lithium battery is

established, and the parameters in the model are identified using matlab and 1stopt, and the simulation model of
the lithium battery is established in Matlab, and then the traditional UKF is improved for estimating the SOC of the
battery, and the SOC values obtained by the SVD-UKF and the traditional UKF are compared with the actual values,
which indicates that the improved algorithm can effectively estimate the SOC value.
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