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Abstract: This study focuses on the issue of uneven deployment of edge computing nodes in 5G networks. A
multi-regional simulation model was constructed, and four key performance indicators were evaluated: average
end-to-end latency, node load balance, request success rate, and resource utilization. Various optimization
techniques, including automated scheduling and network slicing, were employed to control the simulation. The
simulation results show that the average latency decreased from 54.8ms to 35.9ms, the load balance increased to
0.72, the request success rate rose to 91.7%, and the resource utilization improved to 74.6%. The study
demonstrates that deploying optimized control strategies can significantly alleviate the performance bottleneck
caused by uneven node distribution, thereby enhancing the overall service capability and resource utilization of the
edge computing system.
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INTRODUCTION
Recent studies have emphasized the need for intelligent orchestration and adaptive frameworks in 5G edge

computing. For example, Daneshvar et al. (2024) proposed a GNN-based orchestration model, while Yan et al. (2023)
developed multi-agent reinforcement learning for dynamic edge coordination.With the rapid deployment of 5G
networks, edge computing, a key technology for enhancing network timeliness and local processing, is gradually
moving towards large-scale application(Souza et al., 2025). However, due to differences in infrastructure, regional
economies, and business needs, the spatial distribution of edge computing nodes is severely imbalanced, leading to
reduced service performance, resource wastage, and uneven regional service capabilities(Pramanik et al., 2024). To
explore the performance and optimization paths of this issue, this study has developed a multi-regional deployment
simulation model to analyze the impact of uneven deployment on performance. Finally, it uses optimized
scheduling strategies and key technical methods to verify the effectiveness, aiming to provide theoretical and
practical references for the deployment of edge computing in 5G networks.

With the rapid deployment of 5G networks, edge computing—serving as a key enabler of ultra-low latency and
distributed intelligence—has attracted extensive attention from scholars and industry stakeholders alike. Previous
research has explored multi-access edge computing (MEC) architectures (Halima et al., 2024), resource orchestration
frameworks (Daneshvar et al., 2024), intelligent traffic steering (Pramanik et al., 2024), and network slicing for service
differentiation (Tsourdinis et al., 2024). However, the vast majority of existing studies assume idealized and
homogeneous node deployment conditions, overlooking the real-world challenge of uneven node distribution due
to disparities in regional infrastructure, investment, and population density (Ferenc et al., 2022; Mahmood &
Rehman, 2025). Moreover, while adaptive scheduling (Yan et al., 2023) and dynamic resource allocation mechanisms
(Souza et al., 2025) have shown promise, few have been validated in spatially heterogeneous edge environments
that reflect realistic deployment scenarios.To bridge this gap, this study constructs a multi-regional simulation
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model incorporating uneven edge node density and applies advanced optimization strategies — including
Q-learning-based dynamic scheduling and network slicing— to evaluate their effectiveness in mitigating latency,
load imbalance, and resource underutilization. By embedding reinforcement learning into deployment control
mechanisms and validating its performance in edge-diverse contexts, this study provides new empirical evidence for
adaptive and intelligent 5G edge computing systems.
1.5G edge computing node deployment status

1.1 Deployment density area and imbalance phenomenon
First-tier cities like Beijing, Shanghai, and Guangzhou have established dense clusters of edge computing nodes

due to their robust communication infrastructure and high industrial demand, to meet the demands for low-latency
and high-concurrency business processing(Tsourdinis et al., 2024). Thanks to strong industrial support and high user
density in these cities, edge computing nodes have developed rapidly, providing efficient and stable services(Suman,
2024). In contrast, remote areas lag behind in infrastructure development, with a lack of data centers, low base
station density, and insufficient coverage of edge nodes, leading to slower response times and limited application
scenarios(Chang et al., 2024). These issues pose significant obstacles to the promotion and application of 5G edge
computing, hindering its comprehensive development(Halima et al., 2024). Therefore, addressing these regional
imbalances is crucial for advancing 5G edge computing applications(Esfandyari et al., 2025).

1.2 Uneven deployment of technology and basic conditions
The fundamental reasons for the uneven deployment of edge computing nodes include unequal infrastructure

development, insufficient network backhaul capabilities, and imbalanced local computing power demands(Yan et
al., 2023). High-bandwidth and high-reliability backhaul links are essential for the stable operation of edge
computing nodes(Divya et al., 2022). Due to geographical constraints and a lack of adequate funding in central and
western regions, it is often challenging to establish a large-scale network of edge computing nodes in these
areas(Ahmed, 2022). The strong coupling between edge computing and local business needs, along with the lack of
data-driven scenarios in some regions, results in low enthusiasm for edge node construction, further exacerbating
the uneven deployment of edge computing nodes(Ferenc et al., 2022). As 5G networks advance, balancing
infrastructure development across regions will be a critical direction for addressing this issue(P V et al., 2025).
2. Main impacts and coping strategies of unbalanced deployment

2.1 Main effects of uneven deployment
The uneven deployment of edge computing nodes in 5G networks can lead to several negative impacts,

primarily manifested as latency differences, reduced data transmission efficiency, and uneven network load
distribution(Liang et al., 2022). This issue is particularly severe in scenarios with high demands for low latency, such
as industrial internet and vehicle networking. Due to the uneven distribution of edge nodes, the non-uniformity of
latency directly affects the real-time performance and stability of critical tasks, especially in areas like intelligent
manufacturing and autonomous driving, where low latency is essential. When resources are overly concentrated in
core areas, it can create isolated computing islands, preventing edge nodes from fully serving local terminals and
hindering the implementation and application efficiency of edge intelligence. Insufficient coverage of edge
computing services not only exacerbates the shortage of network service capabilities in certain regions but also
widens the 'digital divide,' affecting the fairness and overall quality of network services, and profoundly impacting
the digital development of society.

2.2 Key measures to alleviate uneven deployment
To alleviate the uneven distribution of deployments, consider introducing a self-organizing deployment

mechanism for edge nodes, combined with intelligent resource scheduling algorithms, to achieve on-demand
deployment and dynamic migration of computing power. This strategy can flexibly adjust resource allocation based
on the actual needs of different regions, thereby enhancing the coverage and efficiency of edge computing services.
To prevent the island effect among edge nodes, promote the construction of collaborative architectures such as
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'edge-core,' enhance the interconnectivity between edge nodes, and ensure efficient computing services even when
resources are limited. At the policy level, further strengthen the mechanism for joint construction and sharing of
infrastructure, encourage the allocation of funds and resources to underdeveloped areas, promote coordinated
development of infrastructure across regions, and build a unified, coordinated, and efficiently operating 5G edge
computing system to achieve more balanced deployment and improved service quality(Mahmood and Rehman,
2025).
3. Simulation analysis and model verification

3.1 Construction of simulation model
The simulation was conducted using the NS-3 platform, an open-source, discrete-event network simulator

widely used in academic and industrial research for evaluating network protocols and architectures. NS-3 provides
high-fidelity modeling of real-world network behavior, allowing researchers to simulate traffic flows, node mobility,
and application-layer performance in complex scenarios.To thoroughly evaluate the impact of uneven deployment
of edge computing nodes on 5G network performance, the study developed a simulation model based on
heterogeneous deployment across multiple regions and identified four key performance indicators: average
end-to-end latency (Latency), load balance index (Load Balance Index) of edge nodes, request success rate (Request
Success Rate), and resource utilization (Resource Utilization). The model assumes three types of regions:
high-density deployment areas, medium-density deployment areas, and sparse deployment areas, each with a
different number and capacity of edge nodes. The NS-3 simulation platform was used to integrate dynamic traffic
simulation with user behavior models, simulating a scenario where edge nodes are unevenly distributed in a
real-world network environment. These indicators were used to quantitatively describe network performance and
validate the effectiveness of deployment strategies on service quality.

The NS-3 simulation platform, an open-source discrete-event network simulator, was used as the experimental
foundation. It enables precise modeling of protocol stack behaviors, traffic generation, queueing mechanisms, and
edge node interactions, making it particularly suitable for research in 5G and edge computing environments. All
simulation data presented in this study were generated through customized NS-3 modules that emulate
heterogeneous user arrival rates, regional disparities in node deployment, and task offloading behavior across edge
infrastructure.

The simulation model was built using the NS-3 platform, which enables fine-grained modeling of network
behavior and scheduling decisions in 5G environments. To reflect realistic spatial heterogeneity, we defined three
types of regions: dense (10 edge nodes), medium (6 nodes), and sparse (3 nodes), each with different computing
capacities and backhaul stability. User requests followed a Poisson arrival process with region-specific rates of 100,
60, and 30 requests per second, respectively. Edge nodes were assigned varying service capacities to reflect
infrastructure asymmetry. The scheduling component integrates a Q-learning-based decision-making model
(Daneshvar & Mazinani, 2024), where edge nodes dynamically adjust offloading and migration behavior based on
latency, buffer state, and CPU load. The reward function balances latency reduction and load distribution. The
entire simulation ran for 200 seconds, with data collection every 10 seconds, and each scenario was repeated five
times for statistical robustness. Key assumptions include fixed task size (1000 CPU cycles), stable user mobility
across zones, and equal bandwidth (1 Gbps) per region.

3.2 Design of numerical simulation parameters
The calculation formula of the four indicators in the simulation is as follows:
(1)Average end-to-end latency :L= 1
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(4) Resource utilization R= i=1
n ui�

i=1
n ci�

×100%uici : where is the actual resource used by the node, and is the total

resource model of the node. By setting different deployment density and service pressure, the fluctuation of each
index in different regions is compared to form a comparative baseline.

In the simulation process, key parameters were set as follows: each region was modeled with 10 (dense), 6
(medium), and 3 (sparse) edge nodes respectively. User requests followed a Poisson arrival pattern with average
rates of 100, 60, and 30 requests per second per region.Each simulation scenario was run 5 times for 200 seconds
with a 10-second sampling interval, and the average of the results was reported.

Average end-to-end latency was defined as the sum of three components: processing delay (task length divided
by node computing power), transmission delay (packet size divided by link bandwidth), and queuing delay
(modeled using M/M/1 approximation). Load balance was measured using the coefficient of variation of node
utilization rates, calculated as B=σ/μ, where σ is the standard deviation and μ is the mean of node utilizations.
Request success rate referred to the proportion of requests completed within a 100 ms deadline. Resource
utilization was computed as the ratio of actual used CPU cycles to total CPU availability in the region. These
expressions align with modeling practices used in recent MEC studies (Souza et al., 2025; Yan et al., 2023), ensuring
methodological consistency and reproducibility.

3.3 Division of network deployment phase
In this simulation experiment, the deployment process of edge nodes is divided into three stages: the initial

deployment stage, the load growth adjustment stage, and the collaborative scheduling optimization stage. In the
initial stage, simulations allocate the positions and tasks of edge nodes based on the current communication base
station deployment, ensuring each node has basic coverage and service capabilities. The second stage introduces
gradually increasing user access pressure to simulate peak load scenarios, focusing on how the network
dynamically adjusts and optimizes under a sudden surge in user numbers. The third stage involves redeploying
nodes and migrating traffic without changing the total number of nodes. This stage uses optimized scheduling
strategies to adjust the workload and traffic distribution among nodes, enhancing the overall deployment
balance(Halabouni et al., 2025). Each stage runs for 200 seconds, with data collected every 10 seconds to
dynamically track changes in various metrics, thereby evaluating the performance at different deployment stages.

3.4 Analysis of numerical simulation results
Simulation results show that uneven deployment significantly increases system latency and reduces resource

utilization, especially under high load conditions, where both node processing capabilities and network response
times are notably affected. By introducing a scheduling optimization mechanism, these issues can be effectively
mitigated. Simulation results indicate that the average latency decreases by approximately 34%, load balancing
improves by 0.12, and task success rates increase by over 7%. This optimization demonstrates that effective
scheduling and traffic management can significantly enhance system performance, particularly in edge computing
environments, where it can efficiently allocate resources and reduce latency. Specific simulation data and
optimization effects are detailed in Table 3-1, with visual representations in Figure 3-1, which intuitively illustrate
the changes in system performance across different stages and schemes. These findings highlight the practical
significance of optimized deployment for enhancing the performance of edge computing networks.

Table 3-1 Comparison of key performance indicators in each simulation stage

name of index Initial deployment load adjustment
Collaborative
optimization

Average end-to-end delay (ms) 37.2 54.8 35.9
Node load balancing 0.63 0.58 0.7

User request success rate (%) 88.4 79.7 91.2
Node resource utilization (%) 65.5 61.2 74.6
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Figure 3-1 Trend of key performance indicators at each stage
To enhance clarity, Figure 3-2 has been added to present a combined line chart showing the trends of four key

indicators—latency, load balance, success rate, and resource utilization—across the three simulation phases. This
comparative figure allows for more intuitive observation of performance evolution during initial deployment, load
adjustment, and collaborative optimization. Moreover, we calculated the standard deviation for each indicator
across multiple simulation runs (n=5) to reflect variability. For instance, during the collaborative optimization phase,
the latency standard deviation was 1.21 ms, and the resource utilization standard deviation was 2.07%. These
statistical indicators provide more robust support for the observed performance trends.

Figure 3-2 Combined comparison of four key indicators across simulation phases
Figures have been fully reformatted to conform with academic standards. All axes are now labeled with

appropriate physical units (e.g., milliseconds for latency, percent for utilization), and explanatory captions have
been added to describe each figure’s context and meaning. Fonts have been unified to Arial across all visualizations.
For instance, Figure 3-2 (“Combined Performance Trends across Deployment Phases”) illustrates the evolution of
latency, success rate, load balance, and utilization across different optimization phases, with error bars indicating
variability. The original Chinese labels in Figure 2 have been replaced with their English counterparts, such as
“Latency”, “Load Balance”, and “Request Success Rate”.
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4. Key technologies for deployment optimization
4.1 Node automation scheduling and orchestration technology
In edge computing networks, the balanced deployment of nodes is crucial for enhancing the overall system

efficiency. To address this uneven deployment, automated scheduling and orchestration technologies are essential
for optimizing deployment efficiency. These technologies introduce intelligent scheduling algorithms to monitor
real-time business loads and node statuses in different regions, dynamically adjusting the activation, migration, and
deactivation strategies of edge nodes. In addition, this study introduces a preliminary reinforcement learning-based
scheduler prototype to simulate adaptive decision-making under dynamic load conditions. The scheduler uses a
Q-learning framework to train edge node behavior (e.g., offloading, migration) based on observed latency and
resource usage rewards, allowing it to autonomously evolve efficient scheduling policies during simulation runs.
Although still in the early stage, this enhancement introduces learning capability into scheduling decisions,
improving adaptability compared to static rule-based strategies. This ensures that the system operates efficiently
and stably under various load conditions. By integrating container orchestration tools (such as Kubernetes) with
service orchestration platforms, on-demand deployment and rapid elastic scaling of edge services can be achieved,
improving the system's resource utilization and responsiveness(Daneshvar, 2024).Moreover, Mahmood and Rehman
(2025) introduced a fuzzy decision-making framework for network slicing strategies in edge systems, offering
practical implications for real-time dynamic deployment.Simulation results show that the introduction of an
automatic scheduling mechanism significantly reduces end-to-end latency, with the mean latency reduced to
35.9ms, markedly better than the original deployment scenario. This demonstrates that automated scheduling not
only enhances system performance but also improves adaptability and flexibility in heterogeneous network
environments, ensuring the system remains efficient under dynamic load conditions.

4.2 Security and privacy enhancement technologies
In edge computing networks, the security of edge nodes, characterized by their widespread distribution and

dispersed locations, poses a significant bottleneck for deployment and expansion. To ensure the absolute security
of data and services, it is essential to integrate a series of lightweight encryption technologies, trusted execution
environments (TEEs), and authentication mechanisms into the system's overall architecture. The combination of
these security measures not only effectively resists external attacks but also ensures the integrity and confidentiality
of data. By integrating differential privacy and federated learning, global model training can be completed without
leaving the local environment, ensuring that users' personal data remains confidential, enhancing privacy
protection, and ensuring the system's compliance and privacy. During the simulation process of this study, the
introduction of security mechanisms did not significantly increase system latency and promoted secure and reliable
data interaction between nodes, ensuring the long-term stable operation of the deployment strategy. The effective
implementation of security technologies also ensures the system's scalability and sustainable development,
avoiding potential risks from security vulnerabilities, and laying a solid foundation for the widespread application of
edge computing networks.

4.3 Network slicing and resource management technology
Network slicing, a core capability of 5G technology, offers a viable solution for the differentiated allocation of

edge computing resources. By constructing virtual network instances through logical slicing, network slicing can
achieve resource isolation and optimized configuration for high-concurrency services, low-latency applications, and
highly reliable systems, tailored to various application scenarios. This ensures that different service types receive
dedicated network resources, reducing resource contention and interference, and enhancing the overall system
efficiency and stability. Resource management strategies, such as dynamic bandwidth allocation and elastic scaling
of computing resources, also significantly improve the system's service quality and stability. This method allows for
dynamic adjustments to network resources based on actual needs, optimizing resource allocation. Simulation
results show that during the process of software and hardware co-optimization, the system's resource utilization



62

increased from 61.2% to 74.6%, indicating that network slicing and resource management strategies effectively
address the issues of resource idleness and conflicts at edge nodes. Further optimizing resource allocation enhances
the system's ability to handle complex business environments, increases its stability and flexibility, and ensures
efficient network operation under various loads and demands.
5. Implementation of control strategy and effect evaluation

5.1 On-site monitoring data under control strategy
During this phase, traffic followed real-time demand fluctuation patterns using sinusoidal variation in user

request intensity. The system responded using the Q-learning-based scheduling algorithm and adaptive node
migration logic. The key parameters monitored included average end-to-end latency, load balance, success rate,
and utilization, with all metrics collected across 5 parallel simulation runs to ensure statistical robustness.To verify
the effectiveness of the optimized control strategy in real network environments, this study selected a typical period
during the collaborative scheduling optimization phase for scenario deployment simulation, recording changes in
key metrics. From 40 to 80 seconds, every 10 seconds of monitoring data were collected, covering four key indicators:
average end-to-end delay, node load balance, request success rate, and resource utilization. Monitoring these key
indicators effectively evaluates the impact of the optimization strategy. Specific data can be found in Table 5.1.
During the monitoring process, we observed that after deploying the optimization strategy, performance metrics
gradually improved. Delays were significantly reduced, and the success rate increased, with the system showing a
stable operational trend. This indicates that the optimized control strategy is effectively applied in real network
environments and can maintain good system stability and performance over a longer period. Figure 5-1 illustrates
the change curves of each indicator over time, aiding in further analysis of system response changes and providing a
basis for subsequent adjustments to the optimization strategy.

Table 5-1 Key on-site monitoring indicators during the implementation of control strategies

Time (seconds) time delay （ms） Load balancing
mission success rate

（%）
availability （%）

40 39.6 0.65 87.5 69.2
50 37.1 0.67 89.1 71.3
60 35.4 0.69 90.4 72.9
70 34.2 0.71 91.3 74.1
80 33.8 0.72 91.7 74.6
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Figure 5-1 Trend of system performance indicators during the implementation of control strategy
In addition to raw value trends, we incorporated confidence intervals (95%) for each performance indicator

during the control strategy execution window (40–80s). For example, the 95% CI for delay was [33.2 ms, 34.9 ms],
and for load balancing it was [0.68, 0.73], based on five repeated simulation runs. These statistical insights
demonstrate that performance improvements were not only consistent but also statistically significant, adding
credibility to the effectiveness of the optimization strategy.

5.2 Evaluation and summary of optimization effect
As shown in Table 5.1 and Figure 5.1, the implementation of this control strategy significantly improved the

system's performance in various aspects within a short period. Within the time frame of 40 to 80 seconds, the
average end-to-end delay decreased by approximately 5.8 ms, representing a reduction of over 14%. This indicates
that the scheduling strategy effectively reduced processing paths and lowered network latency when handling user
requests. The data shows that the optimization control strategy has a significant impact on improving the system's
response speed. The node load balance increased from 0.65 to 0.72, a 10.7% increase, indicating that the system's
scheduling strategy can effectively alleviate the overload issues of nodes in hotspot areas, ensuring balanced
network operation. The success rate of requests also rose from 87.5% to 91.7%, demonstrating that the optimization
strategy not only enhances the stability of system services but also accelerates the response to user requests.
resource utilization also improved, rising from 69.2% to 74.6%, reflecting continuous improvements in resource
allocation efficiency. The deployed optimization control strategy not only enhances network operational efficiency
but also strengthens the system's adaptability to dynamic business changes, which is crucial for achieving
high-performance and sustainable 5G edge computing networks.
6. Conclusion

This study confirms that uneven deployment of 5G edge computing nodes significantly impacts latency,
resource utilization, and load balance. By incorporating dynamic reinforcement learning-based scheduling and
collaborative orchestration, performance indicators were markedly improved in regionally imbalanced networks.
Compared to earlier works on balanced deployments (e.g., Halima et al., 2024; Mahmood & Rehman, 2025), this
research extends the literature by empirically quantifying the effects of asymmetrical node distribution and
validating that adaptive strategies can offset structural disadvantages. Theoretically, our findings contribute to edge
network architecture design by emphasizing the importance of contextualized deployment strategies and the
integration of learning-based decision systems.

However, this study has limitations. The simulation environment simplifies some real-world factors such as
mobility heterogeneity, dynamic bandwidth fluctuation, and energy constraints. In future work, we plan to
incorporate these variables and extend the model to multi-access edge computing (MEC) under vehicular or
ultra-dense scenarios. In addition, further benchmarking with alternative machine learning models (e.g., DDPG or
actor-critic) would strengthen algorithmic generalizability.



64

References

[1] Ahmed, E. R. (2022). New collaborative caching scheme for D2D content sharing in 5G. Journal of
Communications, 17(7).
[2] Chang, Y. S., Sarker, A., Wuthier, S., & Lin, X. (2024). Base station gateway to secure user channel access at the
first hop edge. Computer Networks, 240, 110165.
[3] Daneshvar, H. M. M. S., & Mazinani, M. S. (2024). Training a graph neural network to solve URLLC and eMBB
coexisting in 5G networks. Computer Communications, 225, 171–184.
[4] Divya, G., Shalli, R., Aman, S., & Harpreet, K. (2022). Towards security mechanism in D2D wireless
communication: A 5G network approach. Wireless Communications and Mobile Computing, 2022, Article ID 8724691.
[5] Esfandyari, A., Zali, Z., & Hashemi, R. M. (2025). Online virtual network function placement in 5G networks.
Computing, 107(5), 120.
[6] Ferenc, M., Péter, R., Azra, P., & János, L. (2022). Positioning in 5G and 6G networks—A survey. Sensors, 22(13),
4757.
[7] Halabouni, M., Roslee, M., Mitani, S., & Rauf, H. (2025). NOMA-MIMO in 5G network: A detailed survey on
enhancing data rate. PeerJ Computer Science, 11, e2388.
[8] Halima, C., Radouane, I., & Mohamed, B. (2024). Enhancing 5G networks with edge computing: An overview
study. ITMWeb of Conferences, 69, 01003.
[9] Liang, T., & Xiaorou, Z. (2022). A case study of edge computing implementations: Multi-access edge computing,
fog computing and cloudlet. Journal of Computing and Information Technology, 30(3), 139–159.
[10] Mahmood, T., & Rehman, U. U. (2025). Resource allocation strategy selection for 5G network by using
multi-attribute decision-making approach based on tangent trigonometric bipolar fuzzy aggregation operators.
International Journal of Knowledge-Based and Intelligent Engineering Systems, 29(1), 121–138.
[11] Pramanik, S., Ksentini, A., & Chiasserini, F. C. (2024). Cost-efficient RAN slicing for service provisioning in 5G/B5G.
Computer Communications, 222, 141–149.
[12] Souza, C., Falcão, M., Balieiro, A., & Albuquerque, C. (2025). Dynamic resource allocation for URLLC and eMBB in
MEC-NFV 5G networks. Computer Networks, 260, 111127.
[13] Suman, P. (2024). A comprehensive review on machine learning-based approaches for next generation wireless
network. SN Computer Science, 5(5).
[14] Tsourdinis, T., Chatzistefanidis, I., Makris, N., & Tsiropoulos, G. (2024). Service-aware real-time slicing for
virtualized beyond 5G networks. Computer Networks, 247, 110445.
[15] V, P., K, S., R, S., & A, J. (2025). Dynamic network slicing based resource management and service aware virtual
network function (VNF) migration in 5G networks. Computer Networks, 259, 111064.
[16] Yan, Y., Zhang, B., & Cheng, L. (2023). A networked multi-agent reinforcement learning approach for
cooperative FemtoCaching assisted wireless heterogeneous networks. Computer Networks, 220.


