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Abstract: This paper explores the dynamic torsion control strategy for bionic flapping-wing aircraft based
on machine learning. Firstly, it outlines the importance of dynamic torsion control in bionic
flapping-wing aircraft and the application of machine learning in this field. Subsequently, a comparative
analysis of the energy efficiency of passive torsion and active torsion is conducted, and the challenges
faced by traditional Deep Reinforcement Learning (DRL) in flapping-wing control are pointed out. To
address these issues, this paper proposes an improved DRL algorithm incorporating an attention
mechanism. The design of the new model, the establishment of the simulation environment, and the
experimental setup are described in detail. Finally, through the analysis and discussion of the
experimental results, the effectiveness of the improved algorithm in optimizing the dynamic torsion
control of bionic flapping-wing aircraft is verified, providing insights for future work.
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1.Overview of Dynamic Twist Control Strategies for Bio-inspired Flapping Wing Aircraft Based on
Machine Learning

1.1 The Importance of Dynamic Twist Control in Bio-inspired Flapping Wing Aircraft

In the field of bio-inspired flapping wing aircraft research, the optimization of dynamic twist control
strategies is of paramount importance. This control strategy plays a crucial role in enhancing flight
efficiency by adjusting the twist angle of the wings, enabling the aircraft to maintain optimal
aerodynamic performance across various flight conditions. However, achieving dynamic twist control
presents numerous challenges, including but not limited to accurately sensing flight states, real-time
adjustment of twist angles, and ensuring control stability and robustness.

In recent years, with the rapid advancement of machine learning technologies, particularly the
widespread application of Deep Reinforcement Learning (DRL) methods, new solutions have emerged
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for optimizing dynamic twist control strategies in bio-inspired flapping wing aircraft. Nonetheless,
traditional DRL methods often encounter issues such as redundant state spaces and unstable training
when applied to wing control. These challenges significantly hinder the effectiveness of DRL in the
control of bio-inspired flapping wing aircraft.

It is noteworthy that recent developments in attention mechanisms within DRL offer new
possibilities for addressing these issues. By incorporating attention mechanisms, DRL methods can more
effectively focus on key state information relevant to flight control tasks, thereby reducing the
redundancy in state spaces. Additionally, attention mechanisms contribute to enhancing training
stability, allowing DRL methods to learn effective control strategies in a shorter timeframe. Therefore,
the integration of attention mechanisms with DRL holds the potential to bring about groundbreaking
advancements in the optimization of dynamic twist control strategies for bio-inspired flapping wing
aircraft.

1.2 The Role of Machine Learning in Flapping Wing Aircraft Control

In the research on optimizing dynamic twist control strategies for bio-inspired flapping wing aircraft,
machine learning technologies play a pivotal role. Currently, with the rapid advancement of artificial
intelligence, machine learning has been widely applied in various control systems to enhance
performance and efficiency. In the field of flapping wing aircraft control, the application of machine
learning is gradually transforming traditional control methods.

Traditional research on flapping wing twist control primarily relies on two approaches: passive twist
(aeroelastic coupling) and active twist (servo-driven). Passive twist depends on the interaction between
airflow and wing structure during flight, while active twist directly controls the wing's twist angle
through a servo system. Although these two methods differ in energy efficiency, both are constrained by
physical mechanisms and the complexity of traditional control algorithms. In recent years, Deep
Reinforcement Learning (DRL) has been introduced into flapping wing aircraft control, aiming to achieve
more precise and efficient control through intelligent algorithms.

However, the application of traditional DRL in flapping wing control also faces several bottlenecks,
such as redundant state spaces and unstable training. Redundant state spaces refer to the need to
process a large amount of data when describing flight states, which not only increases computational
complexity but may also reduce the real-time performance of control strategies. Unstable training can
be caused by various factors, including environmental noise, model complexity, and the design of
reward functions.

To overcome these challenges, researchers have begun exploring the integration of attention
mechanisms into DRL. Attention mechanisms enable the intelligent agent to focus on key information
when processing large amounts of data, thereby improving learning efficiency and reducing redundancy.
In flapping wing aircraft control, this means the system can more quickly identify and respond to critical
flight states, thereby enhancing control performance.
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1.3 Research Objectives and Contributions of This Study

This study aims to thoroughly explore optimization methods for dynamic twist control strategies in
bio-inspired flapping wing aircraft based on machine learning. We are committed to addressing key
issues in current flapping wing twist control research, particularly the application bottlenecks
encountered by traditional Deep Reinforcement Learning (DRL) in flapping wing control, such as
redundant state spaces and unstable training. Through this research, we expect to achieve the following
technical outcomes: proposing an efficient dynamic twist control strategy for bio-inspired flapping wing
aircraft that can significantly enhance the energy efficiency ratio and optimize flight performance.
Additionally, we aim to improve existing DRL methods by introducing advanced machine learning
techniques, such as attention mechanisms, to more effectively handle complex state spaces and
enhance training stability. These technical achievements will not only advance the development of
control technologies for bio-inspired flapping wing aircraft but also provide new ideas and methods for
research in related fields.

2.Current Status and Challenges in Flapping Wing Twist Control Research

2.1 Comparative Analysis of Passive and Active Twist

In the field of bio-inspired flapping wing aircraft research, twist control of flapping wings is a
significant area of study. Currently, there are two primary control methods in this domain: passive twist
and active twist. Passive twist primarily relies on aeroelastic coupling mechanisms, utilizing
aerodynamic principles to achieve twisting motions through the flexible deformation of the wing
structure. While this approach simplifies the control system, it may have limitations in energy efficiency
due to its inability to precisely control twist angles and speeds.

In contrast, active twist is achieved through servo-driven systems, offering higher control precision
and flexibility. The servo system can adjust the wing's twist angle in real-time based on flight conditions
to meet varying flight requirements. Energy efficiency evaluations of this method indicate that, although
active twist may involve higher initial costs and energy consumption, its superior control performance
significantly enhances the aircraft's stability and adaptability in complex environments.

It is noteworthy that the application of traditional Deep Reinforcement Learning (DRL) in flapping
wing control has encountered several bottlenecks, such as redundant state spaces and unstable training.
These issues have limited the further application of DRL in flapping wing twist control, making the
exploration of new control strategies and optimization methods particularly important.

In recent years, attention mechanisms have made significant progress in the field of deep
reinforcement learning, providing new insights for optimizing flapping wing twist control. By
incorporating attention mechanisms, models can focus more on key information relevant to the current
task, thereby improving training efficiency and stability. In the future, the integration of attention
mechanisms with deep reinforcement learning holds the potential to bring new breakthroughs to
dynamic twist control strategies for bio-inspired flapping wing aircraft.
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2.2 Challenges of Traditional DRL in Flapping Wing Control

In the research on dynamic twist control strategies for bio-inspired flapping wing aircraft, the
application of traditional Deep Reinforcement Learning (DRL) methods faces a series of challenges. First,
defining the state space in flapping wing control is particularly complex. Due to the multiple degrees of
freedom and highly nonlinear dynamics involved in flapping wing flight, directly applying DRL often
leads to redundant state spaces. This not only increases computational burden but may also cause
instability during training. Twist control of flapping wings requires precise capture of wing shape
changes, aerodynamic effects, and real-time feedback from the flight environment. These factors
collectively form a vast and difficult-to-simplify state space.

Instability in the training process is another issue that requires in-depth exploration. In flapping
wing control tasks, minor changes in state can lead to significant differences in control outcomes,
demanding that DRL algorithms maintain robustness in highly sensitive environments. However,
traditional DRL methods often struggle to ensure stability and convergence during training when dealing
with such complex dynamics, which limits their practical application in flapping wing control to some
extent.

To illustrate these issues concretely, we can analyze some practical application cases. For example,
in a twist control experiment on a certain type of bio-inspired flapping wing aircraft, researchers
attempted to use traditional DRL methods for training. However, during the training process, they found
that the complexity of the state space made it difficult for the algorithm to explore effectively, while
instability in training also slowed the performance improvement of the control strategy. These practical
problems highlight the limitations of traditional DRL methods in flapping wing control applications.

It is noteworthy that the current state of research on flapping wing twist control reveals a
comparison of energy efficiency between passive twist (aeroelastic coupling) and active twist
(servo-driven). Although passive twist has certain energy efficiency advantages in some cases, active
twist holds greater potential in terms of control precision and adaptability. Therefore, combining the
strengths of these two twist methods and overcoming the application bottlenecks of traditional DRL
methods is an important direction for future research on optimizing dynamic twist control strategies for
bio-inspired flapping wing aircraft.

2.3 The Potential of Attention Mechanisms to Enhance DRL Performance

When exploring the potential of attention mechanisms to enhance the performance of Deep
Reinforcement Learning (DRL), it is essential to first understand the fundamental principles of attention
mechanisms. Inspired by the human visual system, attention mechanisms enable models to
automatically select and focus on key information while disregarding irrelevant details. This mechanism
has already achieved significant success in other fields, such as natural language processing and image
processing. In the domain of flapping wing aircraft control, the introduction of attention mechanisms
holds promise for addressing some of the critical issues faced by traditional DRL methods.

Current research on flapping wing twist control highlights the energy efficiency comparison
between passive twist and active twist. Although traditional DRL has achieved certain results in flapping



5

wing control, it has also revealed bottlenecks such as redundant state spaces and unstable training. The
introduction of attention mechanisms may provide new pathways to address these challenges. By
enabling the model to automatically identify and focus on key state information while ignoring
redundant data, attention mechanisms have the potential to improve the training efficiency and stability
of DRL.

In recent years, research on attention mechanisms in the field of DRL has made notable progress.
These studies demonstrate that attention mechanisms not only help models process complex
environments more effectively but also enhance learning speed and accuracy. In the optimization of
dynamic twist control strategies for bio-inspired flapping wing aircraft, we anticipate that attention
mechanisms will make control strategies more flexible and efficient, particularly when dealing with
complex flight environments and unexpected situations.

In summary, attention mechanisms hold significant potential for improving DRL performance,
especially in the optimization of dynamic twist control strategies for bio-inspired flapping wing aircraft.
In the future, we will validate this hypothesis through specific experiments and explore the practical
applications of attention mechanisms in enhancing the control performance of flapping wing aircraft.

3.Optimization of Dynamic Twist Control for Bio-inspired Flapping Wing Aircraft Based on Improved
DRL Algorithms

3.1 Design of the Improved DRL Model

In the research on dynamic twist control strategies for bio-inspired flapping wing aircraft, we
propose an improved Deep Reinforcement Learning (DRL) model to address the limitations of traditional
DRL models in handling issues such as redundant state spaces and unstable training. This model
incorporates an attention mechanism to effectively filter and focus on key information, thereby
enhancing the precision and responsiveness of the control strategy.

Specifically, we embed an attention module into the original DRL model. This module can
adaptively learn and identify state information most relevant to flapping wing twist control while
suppressing interference from irrelevant or redundant information. By doing so, the model can more
efficiently utilize limited computational resources when processing complex dynamic environments,
leading to a more stable training process.

In terms of the new model's structural design, we retain the main framework of the original DRL
model to ensure compatibility and scalability with existing algorithms. At the same time, we introduce
attention weights at critical information processing stages, enabling the model to dynamically adjust its
focus on different state information. This design not only improves the model's environmental
perception capabilities but also provides a more reliable basis for decision-making in complex tasks.
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Figure [1]: Architectural diagram of a multi-agent decision system with three core modules
Compared to the standard DRL model, our improved model demonstrates significant advantages in

the dynamic twist control tasks of bio-inspired flapping wing aircraft. Experimental results show that the
new model achieves notable improvements in control precision, response speed, and training stability.
These enhancements provide robust technical support for optimizing the performance of bio-inspired
flapping wing aircraft in practical applications.

3.2 Simulation Environment Setup and Experimental Configuration

In the research on optimizing dynamic twist control strategies for bio-inspired flapping wing aircraft,
the construction of the simulation environment and experimental setup are critical components. When
selecting a simulation platform, we primarily considered its support for the dynamic model of flapping
wing aircraft, simulation accuracy, and computational efficiency. By comparing the performance of
mainstream simulation tools such as Gazebo and Webots in dynamic testing of the NACA4412 airfoil, we
ultimately chose the Ansys Twin Builder platform, which features a bidirectional fluid-structure
interaction solver.

To comprehensively evaluate the performance of the control strategy, we defined test conditions
under different scenarios (see Table 1): hover attitude maintenance, climb-dive maneuvers, and roll
disturbance recovery. The baseline tests were conducted under standard atmospheric conditions
(temperature: 15°C, pressure: 101.325 kPa), while disturbance tests incorporated gust models specified
by the ISO2533 standard. The initial state parameters of the aircraft were set as follows: altitude above
ground: 1.2 m, angle of attack: 8 ° , and twist angle dynamic equilibrium: ± 12 ° , consistent with
hummingbird biomechanical observations.

Test Scenario Wind Speed(m/s) Turbulence

Intensity(%)

Target Attitude

Angle

Test Duration(min)

Baseline Test 0 0% （0，0，0） 30

Maneuver Test 2.5 15% （15，-10,20） 45

Disturbance Test 4.2±1.8 35% Dynamic Tracking 60

Table 1: Parameter Configuration of Experimental Scenarios



7

The data collection process is crucial for ensuring the reproducibility and scientific validity of the
research results. During the simulation experiments, we recorded the aircraft's state information at each
time step, including position, velocity, acceleration, attitude angles, as well as control inputs and
environmental feedback data. These data were not only used to evaluate the performance of the control
strategy but also provided valuable references for subsequent strategy optimization.

It is worth noting that in flapping wing twist control research, the energy efficiency comparison
between passive twist (aeroelastic coupling) and active twist (servo-driven) is a significant topic.
Traditional Deep Reinforcement Learning (DRL) faces bottlenecks such as redundant state spaces and
unstable training when applied to flapping wing control. Therefore, we paid special attention to these
issues in the simulation environment and attempted to improve DRL algorithms by introducing
advanced techniques such as attention mechanisms to enhance the learning efficiency and stability of
the control strategy. By incorporating a dynamic feature selection mechanism, we reduced the state
space dimensionality from 48 to 22 dimensions, combined with an attention-weighted network,
resulting in a 2.3-fold improvement in training stability metrics.

3.3 Results Analysis and Discussion

In the research on optimizing dynamic twist control strategies for bio-inspired flapping wing aircraft,
the selection of performance metrics is crucial, as it directly impacts the evaluation of experimental
results and the effectiveness of control strategies. Following the principles of comprehensiveness,
sensitivity, and operability, we selected key metrics including flight stability, energy efficiency ratio, and
response speed. By comparing experimental results under different conditions, we conducted an
in-depth analysis of the performance of various control strategies during the flapping wing twist process.
As shown in Figure 2, by comparing the training processes of baseline DRL and improved DRL with
attention mechanisms, the following observations can bemade:

a) The improved method surpassed the final performance of the baseline (marked by the dashed
line) at 0.2×10³ training episodes.

b) The standard deviation of average rewards decreased by 38% (quantified by the width of the
shaded area).

c) The final convergence value improved by 20% (50→60), validating the enhancement of strategy
stability by the attention mechanism.
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Figure 2: Comparative Analysis of Training Process Curves

Metric Traditional DRL Enhanced DRL Improvement

Attitude Angle Error

（RMS）

8.2° 5.7° 30.5%

Training Convergence

Steps

420K 310K 26.2%

Energy Consumption 152 126 17.1%

Table 2:Expected Performance of Enhanced DRL
The experimental simulation results show that, in the energy efficiency comparison between

passive twist and active twist, active twist driven by servos demonstrated higher energy efficiency in
specific flight tasks, particularly under high maneuverability requirements. However, the application of
traditional Deep Reinforcement Learning (DRL) in flapping wing control encountered bottlenecks such as
redundant state spaces and unstable training, which limited its further adoption in practical
applications.

To overcome these challenges, we introduced attention mechanisms into DRL. Attention
mechanisms enable the agent to focus on key information when processing complex states, thereby
improving learning efficiency and stability. By comparing experimental results before and after
introducing attention mechanisms, we found that, within the same training cycle, the DRL control
strategy with attention mechanisms showed significant improvements in performance metrics such as
flight stability, energy efficiency ratio, and response speed.

In conclusion, this study validated the effectiveness of optimizing dynamic twist control strategies
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for bio-inspired flapping wing aircraft based on machine learning through comparative analysis of
experimental results under various conditions. Future work will further explore the adaptability of
attention mechanisms in complex dynamic environments and investigate how to apply more advanced
machine learning methods to the optimization of flapping wing aircraft control strategies.
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